Развитие волновой энергетики в россии. Волновые электростанции

В нашей стране интерес к волновым преобразователям возник в 20-30гг. XX века. В 1935г. наш великий соотечественник К.Э. Циолковский опубликовал статью «Волнолом и извлечение энергии из морских волн», в которой описал принципиальные схемы трех типов устройств и в настоящее время относящихся к разряду наиболее перспективных. В них без труда узнаем (рис. 2.1) аналоги будущих устройств разработанных Масудой, Кайзером, Коккереллом. Российский ученый К.Э. Циолковский считал, что первые две системы не оригинальны, но относительно новизны последней - контурного плота - не сомневался.

Рис. 2.1.

описанные К.Э. Циолковским: а,б - пневматические; в - контурный плот.

В 70-х годах прошлого века на Черном море испытывалась модель волнового плота. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 - 15 м установка развивала мощность 150 кВт. (рис.2.2)

Рис. 2.2. Вариант выполнения контурного плота Коккерелла: 1 - колеблющаяся секция; 2 - преобразователь; 3 - тяга; 4 - шарнир.

Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера, но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным.

В современной России существует множество разработок волновых электростанций, все они реализованы в той или иной степени. Одним из таких проектов является совместная разработка компании ОАО «OceanRusEnergy» и Уральский федеральный университет (УрФУ г. Екатеринбург).

Рис. 2.3.

При создании волнового движения в верхней и нижней точках прохождения волны, маятник совершает возвратно-поступательные движения, аккумулируя потенциальную энергию в пружине. При вращении вала генератора вырабатывается переменный ток. Для создания постоянного тока предусмотрены небольшие выпрямители (например, по схеме Ларионова), что позволяет осуществлять зарядку АКБ (аккумуляторная батарея).

Схема воздействия волны на поплавковый микромодуль волновой микро ЭС (ВГЭС) представлена на рис. 2.4.

волновой электростанция поплавковый микромодуль

Рис. 2.4

При испытаниях модуля ВГЭС имитировалась волновая качка Баренцева моря с периодом колебания волны от 1 до 3,5 секунд, среднегодовой скоростью ветра 7-9 м/с, расчетной гарантированной амплитудой колебаний (высота волны) 20 см и 30 см. Для имитации волн был использован кривошипно-шатунный механизм (КШМ) с продольным движением конечного звена - тяги. КШМ преобразовывал вращение вала двигателя в возвратно-поступательное движение тяги. В качестве привода был выбран асинхронный двигатель мощностью Р=1 кВт и частотой вращения n0 не менее 3000 об/мин. Редуктор был подобран из расчета передаточного отношения Z=25.

Использование в исследовании режимов имитации волн с амплитудой А=20, А=30, и периодом колебаний Т=2, 3, 3.5 с позволило получить необходимые электротехнические значения и характеристики для оценки генерируемой мощности и определить оптимальные и эффективные режимы работы исследуемой поплавковой ВГЭС.

Испытания на стенде проводились в лаборатории волновой энергетики Евроазиатского центра ВИЭ УрФУ. Испытуемый образец ВГЭС представлен на рис. 2.5.

Рис. 2.5.

Пример электротехнических параметров генерирующего модуля при постоянном токе(DC) представлен на графике.

График показателя мощности ВГЭС при амплитуде колебаний 0,2м и периоде 1 с.

Результаты экспериментов с имитацией волн разной амплитуды и периода колебаний волн Т показали, что генерируемая мощность одного модуля ВГЭС составляет 15-60 Вт. Увеличение мощности до уровня, нескольких кВт, решается за счет использования нескольких микромодулей ВГЭС, объединенных в единый кластер (рис.2.6)

Рис. 2.6.

Дальнейшее наращивание мощности ВГЭС до нескольких десятков и сотен кВт может быть реализовано путем сборки большего числа микромодулей в кластеры ВИЭ на базе волновых микромодулей (рис. 2.7).

Рис. 2.7.

Заключение

В случае непосредственного использования электроэнергии, вырабатываемой волновой станцией, для хозяйственных нужд ее нельзя рассматривать как самостоятельный источник. Непостоянство во времени и пространстве, сезонный характер самого ресурса требуют иметь в резерве какой-то дополнительный источник электроэнергии, либо подключать волновую электростанцию к энергосети, позволяющей за счет сторонних источников компенсировать снижение мощности из-за уменьшения волнения, либо, наконец, использовать аккумулирование энергии.

Еще одна трудность при создании волновых преобразователей - обеспечение их живучести в случае экстремальных волновых нагрузок, значительно превышающих расчетные режимы эксплуатации. Среднее значение мощности, для Северной Атлантики составляет примерно 50 кВт/м. Во время сильного шторма эта величина может достичь значения 2 МВт/м при высоте волн 15 м. Наблюдавшиеся в этом же районе максимальные волны (так называемые «пятидесятилетние волны») имели высоту до 34 м. Для этого района считается целесообразным разрабатывать устройства, рассчитанные на нормальную работу в диапазоне мощностей 50--150 кВт/м. Таким образом, чтобы противостоять штормам средней силы преобразователи энергии волн должны иметь установленную мощность, значительно превышающую среднюю. Это не спасает их от сильных штормов. Здесь предложено несколько вариантов защиты. Например, в случае такого шторма преобразователь может быть затоплен. Другой вариант -- так рассчитывать преобразователи, чтобы с увеличением волнения выше оптимального их эффективность падала. Однако, в любом случае возникают серьезные трудности при обслуживании, передаче энергии, удержании на якоре. Возникают даже совершенно новые проблемы. Например, срыв с якоря одного из точечных преобразователей может привести к разрушению соседних с ним устройств. Выбрасывание же на берег аварийных устройств может привести к опасности разрушения береговых сооружений.

Трудности создания энергетики на преобразовании энергии волн достаточно велики. Их преодоление потребует еще многих усилий разработчиков и ученых. В настоящее время в мире уже эксплуатируется около 400 автономных навигационных буев, использующих энергию воды. Однако уже в этом столетии прогнозируется возможное получение от океанских волн мощности не менее 10 ГВт (мощность Красноярской ГЭС около 12 ГВт).

Преимущества волновой энергии состоят в том, что она достаточно сильно сконцентрирована, доступна для преобразования и на любой момент времени может прогнозироваться в зависимости от погодных условий. Создаваясь под действием ветра, волны хорошо сохраняют свой энергетический потенциал, распространяясь на значительные расстояния. Например, крупные волны, достигающие побережья Европы, зарождаются во время штормов в центре Атлантики и даже в Карибском море.

. Места с наибольшим потенциалом для волновой энергетики - западное побережье Европы , северное побережье Великобритании и Тихоокеанское побережье Северной , Южной Америки , Австралии и Новой Зеландии , а также побережье Южной Африки [ ] .

История

Первая волновая электростанция

Первая волновая электростанция расположена в районе Агусадора , Португалия , на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт , этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.

Параметры электростанции

Электростанция состоит из 3-х устройств под названием Pelamis P-750 (англ.) русск. . Это большие плавающие объекты змеевидного типа, размер каждого:

Мощность одного такого конвертера составляет 750 КВт. Удельные характеристики: мощность 1 кВт/тонну и 650 Вт на м³ конструкции. В электричество превращается примерно 1% энергии волнения. [ ]

Устройство и принцип действия

Pelamis P-750 состоит из секций, между секциями закреплены гидравлические поршни. Внутри каждой секции также есть гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их изгибаться, за что конструкции стали называть «морскими змеями» («sea-snake») . Движение этих соединений приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение масло. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые производят электроэнергию .

Перспективы

В дальнейшем планируется добавить к трём существующем конвертерам ещё 25, что увеличит мощность электростанции с 2,25 МВт до 21 МВт . Такой мощности хватит для обеспечения электроэнергией 15 000 домов и снизит выбросы углекислого газа на 60 000 тонн в год.

Российские разработки

На территории Москвы может быть начато строительства производственного научно-исследовательского предприятия, которое будет разрабатывать модуль поплавковой волновой электростанции. Инвестор планирует строительство опытно-промышленного предприятия, включающего в себя производственную научно-исследовательскую лабораторию.

Другие эксплуатирующиеся и строящиеся волновые электростанции

Преимущества и недостатки волновой энергетики

Существует проблема, связанная с тем, что при создании волновых электростанций штормовые волны гнут и сминают даже стальные лопасти водяных турбин. Поэтому приходится применять методы искусственного снижения мощности, отбираемой от волн.

Преимущества

  • Волновые электростанции могут выполнять роль волногасителей, защищая порты, гавани и берега от разрушения.
  • Маломощные волновые электрогенераторы некоторых типов могут устанавливаться на стенках причалов, опорах мостов, уменьшая воздействие волн на них.
  • Поскольку удельная мощность волнения на 1-2 порядка превышает удельную мощность ветра, волновая энергетика может оказаться более выгодной, чем

Электростанция предназначена для выработки электроэнергии путем использования энергии волн. Устройство содержит плавучий корпус с электрогенератором и расположенные на горизонтальном валу поплавки. На разнесенных понтонах расположены поперечно параллельные друг другу эстакады с опорами под вал. На каждом валу установлены с минимальным зазором поплавки в виде полых полуцилиндров, снабженных дополнительным грузом и объемным выступом. При этом ближайшие параллельные валы соединены между собой зубчатой передачей. Валы, расположенные на одной линии по разные стороны от понтона с механизмами привода к электрогенератору, также соединены между собой и имеют общую зубчатую передачу, редуктор и электрогенератор. Конструкция электростанции позволяет получить увеличение мощности, снимаемой с 1 м 2 воды. 4 з.п.ф-пы, 4 ил.

Изобретение относится к энергетике, в частности для выработки электроэнергии путем использования энергии морских волн за счет образующихся вертикальных подъемов и спадов волн. Известна волновая электростанция, а.с. N 1373855 F 03 B 13/12, содержащая плавучий корпус с электрогенератором, воздушной турбиной к волноприемным камерам с поплавками. Камеры выполнены в виде стаканов, открытый торец которых погружен под уровень воды. При этом для увеличения КПД каждая камера снабжена дополнительной воздушной турбиной и гидронасосом, связанными с поплавком при помощи бесконечной цепной передачи. Основным недостатком указанной установки является ограниченная мощность, связанная с медленным подъемом поплавка, равной подъему волны, и с тем, что на цепь действует ограниченная выталкивающая сила от поплавка, равная половине объема поплавка, так как удельный вес поплавка равен 0,5 г/см 3 . Большое количество механизмов и передаточных устройств усложняет установку и ведет к значительным потерям мощности, уменьшающих эффект от использования поплавка. Известна волновая электростанция (патент РФ N 2049925, кл. 6 F 03 B 13/12, 6 F 03 B 13/22 от 06.02.1992 г.), содержащая плавучий корпус с электрогенератором, воздушной турбиной и волноприемными камерами в виде погруженных в воду открытым концом стаканов, снабженных внутри поплавками Г-образной формы, установленных на горизонтальном валу с возможностью одностороннего вращения, при этом один из выступов поплавка длиннее или тяжелее другого, все валы соединены между собой, повышающий редуктор связан с последними и валом воздушной турбины при помощи обгонных муфт, а вал турбины подключен к электрогенератору. Основным недостатком указанной волновой электростанции является также низкий КПД и сложность конструкции. Это связано с тем, что ввиду кратковременности воздействия волны на сжатый воздух в камерах не удается передать весь сжимаемый в камере воздух в воздушную турбину, а при увеличении проходного сечения воздуховодов и самой турбины уменьшится давление воздуха в камере и соответственно снимаемая мощность с турбины. Г-образная форма поплавка не позволяет эффективно использовать пространство в части увеличения выталкивающей силы и создает еще большее гидравлическое сопротивление при вращении его выступов. Кроме того, конструкция волновой электростанции с использованием энергии сжатого воздуха очень сложна в изготовлении и в эксплуатации и требует больших капитальных затрат на изготовление турбины. Волновая электростанция по патенту РФ N 2049925 принята за прототип. Задачей изобретения является упрощение конструкции и повышение мощности волновой электростанции. Это достигается тем, что в волновой электростанции, содержащей плавучий корпус с электрогенератором, расположенные на горизонтальном валу с возможностью одностороннего вращения поплавки, занимающие в воде положение неустойчивого равновесия, переходящего в неуравновешенное состояние и ускоренное вращательное движение в момент полного погружения поплавка, повышающий редуктор, соединяющий вал с электрогенератором, плавучий корпус выполнен в виде соединенных не менее чем двух узких понтонов, разнесенных по ширине и снабженных сверху поперечно расположенными параллельными друг другу эстакадами, вдоль каждой эстакады снизу установлены соосно кронштейны с опорами под вал, поплавки расположенных между всеми опорами последовательно с минимальными торцевыми зазорами, исключающими заклинивание поплавков при их относительном вращении, на выходных концах валов установлено зубчатое колесо, связанное непосредственно с зубчатым колесом на входном валу редуктора или через повышающую зубчатую передачу, поплавок выполнен в виде полого герметичного полуцилиндра и снабжен дополнительным грузом и расположенным с противоположной ему от оси стороны объемным выступом в виде дополнительного поплавка, при этом момент, создаваемый весом объемного выступа, больше (примерно на 5-10%) момента, создаваемого дополнительным грузом, а момент, создаваемый выталкивающей силой при погружении в воду одного объемного выступа больше момента, создаваемого весом объемного выступа, неуравновешенными воздействиями на поплавок водных и воздушных потоков и силами трения в момент начала вращения поплавка. При этом выходные концы рядом расположенных валов эстакад попарно или более соединены между собой путем зацепления зубчатых колес и установки общего редуктора и электрогенератора, а поплавки на связанных между собой валах расположены симметрично, выходные концы соосно расположенных валов эстакад, размещенных в одну линию, соединены между собой и снабжены общей зубчатой передачей, редуктором и электрогенератором, объемный выступ поплавков выполнен заодно с полуцилиндром путем удлинения окружности полуцилиндра, передняя по ходу вращения поплавка поверхность объемного выступа выполнена в виде сужающего клина. На фиг. 1 изображен общий вид волновой электростанции, на фиг. 2 показан вид сверху, на фиг. 3 изображен отдельно поплавок, а на фиг. 4 его поверхность. При этом обозначено - угол поворота поплавка в текущее положение, Q о - выталкивающая сила, действующая на поплавок в исходном положении, P - вес поплавка, h п - плечо от силы веса поплавка, C в - точка центра массы воды в объеме погруженной части поплавка, Q - выталкивающая сила в текущем положении, h в - плечо выталкивающей силы, P ов - вес объемного выступа, P д - вес дополнительного груза, Y св - расстояние от оси О до центра массы воды в объеме погруженной части поплавка (для сектора с углом Y сп - расстояние от оси О до центра масс поплавка, h ов - плечо от силы веса объемного выступа, h д - плечо от силы веса дополнительного груза, l - длина поплавка, R - наружный радиус поплавка. Волновая электростанция состоит из плавучего корпуса, выполненного в виде разнесенных по ширине друг от друга не менее чем двух узких понтонов (на фиг. 1 показано 3 понтона - 1, 2 и 3), соединенных между собой балками 4 и 5. Понтоны 1 и 3 выполнены в виде полой герметичной трубы, а средний понтон 2 имеет коробчатую форму для размещения в нем механизмов привода. На понтонах установлены поперек им и параллельно друг другу эстакады 6, опирающими своими концами на понтоны. Вдоль каждой эстакады 6 установлены снизу соосно кронштейн 7 с опорами под вал 8. Между всеми опорами кронштейнов 6 установлены на валу поплавки 9 с возможностью одностороннего вращения (за счет применения обгонных муфт или храповых механизмов). Поплавки 9 располагаются последовательно на валу с минимальными торцевыми зазорами, исключающими заклинивание поплавков при их относительном вращении от температурных и силовых деформаций. На выходных концах валов 8 устанавливаются зубчатые колеса 10, которые находятся в зацеплении непосредственно с зубчатыми колесами (на фиг. не показано) на входном валу повышающих редукторов 11 или через дополнительную повышающую зубчатую передачу (на фиг. не показано). Зубчатое колесо 10 выполняет одновременно роль маховика. Выходной вал каждого редуктора 11 связан с валом электрогенератора 12 (редуктор 11 устанавливают при необходимости, возможна передача на генератор без редуктора). Поплавки 9 (см. фиг. 3) выполнены в виде полых герметичных полуцилиндров. При этом они снабжены объемным выступом 13 (над осью ОХ), выполненным в виде отдельного элемента или заодно с полуцилиндром, как это изображено на фиг. 3 (объемный выступ выполнен путем удлинения окружности полуцилиндра на угол от оси ОХ) и образования дополнительного сектора. На противоположной стороне внутри поплавка устанавливается дополнительный груз 14 с таким расчетом, чтобы момент, создаваемый весом объемного выступа 13, был равен или больше (примерно на 5-10%) момента, создаваемого дополнительным грузом 14, а выталкивающая сила, действующая на один объемный выступ 13 при погружении его в воду, должна создавать крутящий момент, больший момента, создаваемого весом объемного выступа, хаотичным и неуравновешенным воздействием на поплавок водных и воздушных потоков и силами трения, действующих в момент начала вращения поплавка. Объемный выступ 13 является инициирующим элементом, выводящим поплавок из состояния неустойчивого равновесия в неуравновешенное состояние с ускоренным поворотом поплавка (кувырком) при полном погружении поплавка в воду. Размеры волновой электростанции, количество понтонов и эстакад с поплавками зависят от планируемого съема мощности. При этом для обеспечения большей равномерности вращения генератора, а также уменьшения количества используемых механизмов приводов (зубчатых передач, редукторов, муфт и т.д.) выходные концы рядом расположенных валов эстакад попарно или более соединены между собой путем зацепления зубчатых колес на выходных концах валов между собой с установкой общего редуктора, электрогенератора и повышающей зубчатой передачи, а поплавки на связанных кинематически между собой валах расположены симметрично относительно плоскости, проходящей по середине расстояния между валами. В этом случае объемные выступы поплавков на одном валу будут располагаться на противоположной стороне по отношению к расположению объемных выступов поплавков на другом валу. Такое расположение поплавков обеспечивает вращение кинематически связанных валов в разные стороны. При количестве понтонов свыше двух для обеспечения большей равномерности вращения электрогенераторов и уменьшения количества используемых механизмов приводов и электрогенераторов эстакады и валы на смежных понтонах располагают в одну линию. В этом случае выходные концы эстакады на смежных понтонах соединяют между собой (при помощи муфты) с использованием одного общего зубчатого колеса на выходном конце одного из этих валов, общей повышающей зубчатой передачи, общего редуктора и электрогенератора (как это изображено на фиг. 1). Для уменьшения сопротивления воды при погружении поплавка в воду в момент, когда он совершает вращательное движение из крайнего верхнего положения (после кувырка) передняя по ходу вращения поплавка поверхность 15 выполнена в виде сужающего клина (фиг. 4). Поплавки 8 устанавливаются на валу с зазором и передают крутящий момент на вал при помощи обгонной муфты, состоящей из клиновидно-криволинейного пространства 16 (образованного криволинейной поверхностью 17 выемки вала и цилиндрической поверхностью отверстия поплавка) и подпружиненных пальцев 18, установленных внутри клиновидно-криволинейного пространства 16. Возможно сопряжение поплавков с валом с использованием храпового механизма, состоящего из храпового колеса, жестко закрепляемого на валу, и собачки, устанавливаемой на поплавке (на фиг. не показаны). При этом для уменьшения длины валов храповое колесо и собачка целесообразно располагать внутри проточки поплавка, выполненной соосно с отверстиями поплавка со стороны одного или двух торцев поплавка. Для обеспечения гарантированного удержания поплавков в момент набегания волны от поворота до их полного затопления и тем самым создания максимальной потенциальной энергии погруженного поплавка, а также расширения технологических возможностей в части исключения необходимости очень точного изготовления поплавков, целесообразно обеспечить условие, чтобы момент, создаваемый весом объемного элемента, заведомо превосходил момент, создаваемый весом дополнительного груза. В этом случае для удержания поплавков от поворота в обратную сторону под действием этой разницы в моментах на уровне задней поверхности 19 поплавков 9 устанавливаются с небольшим перекрытием задней поверхности поплавка подпружиненные подвижные упоры 20, шарнирно закрепленные на неподвижных штангах 21, связанных с эстакадами. Сверху над подвижными упорами 20 закреплены на штангах неподвижные упоры 22, расположенные вне зоны вращения поплавка и удерживающие подвижные упоры 20 от подъема вверх. Поскольку при погружении поплавка в воду до начала затопления объемного выступа неуравновешенный момент, действующий в обратную сторону на поплавок, незначительный, то и сила воздействия поплавка снизу на подвижный упор 20 незначительна. Это позволяет выполнить упоры 20 небольшими по массе и объему и использовать пружину с небольшим усилием сжатия. Поэтому при рабочем вращении поплавка и воздействия его на подвижные упоры 20, уже сверху, они легко поворачиваются, погружаясь в воду, и не оказывают большого сопротивления поплавкам. Неподвижные упоры 22 могут быть выполнены непосредственно в самих шарнирах подвижных упоров 20 в виде известных конструкций ограничителей поворота. При равенстве моментов, создаваемых объемным выступом и дополнительным грузом, можно исключить применение подвижного упора 20 и неподвижного упора 22. Но для этого необходимо обеспечить постепенное увеличение объема правой части поплавка от оси OY, например, за счет плавного увеличения длины поплавка. При погружении в воду правой части поплавка будет действовать большая выталкивающая сила, чем в левой, которая обеспечит гарантированный поворот поплавка в сторону объемного выступа. Но в этом случае невозможно обеспечить максимальный запас потенциальной энергии поплавка, а его поворот будет адекватным подъему уровня воды в волне. Плавучий корпус снабжен растяжками 23 с возможностью изменения их длины (например, с помощью лебедки). Это позволяет изменять положение корпуса относительно направления волн с целью обеспечения более плавного нагружения валов крутящим моментом от поплавков, расположенных под углом к фронту волн. Возможны другие варианты изменения углового положения корпуса, например, с помощью воздушного или водного киля. Для регулирования положения поплавков относительно уровня воды при монтаже электростанции используются домкраты и прокладки у опор эстакад. При этом целесообразно монтаж производить с обеспечением максимального расположения поплавков относительно уровня воды, а регулировку осадки корпуса производить при помощи закачки или откачки в понтонах. Возможен вариант использования для этого дополнительных понтонов путем подъема или опускания их в воду на определенную глубину. Для укрытия оборудования от атмосферных осадков и создания нормальных климатических условий в работе обслуживающего персонала предусматривается крытое помещение 24. Коробчатый понтон 2 закрывается сверху люками (на фиг. не обозначены). Работа волновой электростанции выполняется следующим образом. В исходном положении, когда отсутствуют волны, все поплавки 9 занимают крайнее нижнее положение согласно фиг. 3, при этом они могут касаться и не касаться воды и даже могут быть чуть погруженными в воду (до уровня воды, при котором в процессе работы свободно падающий с крайнего верхнего положения поплавок создает неуравновешенный момент даже при погружении части поплавка в воду до этого уровня, и поплавок свободно возвращается в исходное положение, будучи частично затопленным. Разница в моментах M от веса объемного выступа 13 и дополнительного груза 14 прижимает поплавок 9 к подвижному упору 20, а тот в свою очередь прижимается к неподвижному упору 22. При образовании волн, "набегающих" под острым углом к оси валов, поплавки поочередно погружаются в воду (затапливаются волной). При этом возникает выталкивающая сила Q, равная весу воды в объеме погруженного поплавка (по закону Архимеда). Так как выталкивающие силы, действующие по обе стороны от оси OY, равны, то результирующая выталкивающая сила Q проходит вертикально вверх через ось вращения поплавка и не создает крутящего момента при погружении поплавка до самой оси OX. Сила веса поплавка P также проходит через ось OX, только вниз, и не создает крутящего момента, за исключением вышеуказанного момента M, создаваемого разницей моментов от веса объемного выступа 13, и веса дополнительного груза, который уровновешивается реакцией R уп опоры от упоров 20 и 21. При погружении поплавка выше оси OX затапливается объемный выступ 13, вследствие чего возникает дополнительный крутящий момент, который превосходит разницу M в моментах от веса объемного выступа и дополнительного груза. В результате этого поплавок начинает поворачиваться, перескакивает положение неустойчивого равновесия и стремится совершить кувырок и выскочить с ускорением из воды. Выталкивающая сила, действующая по левую сторону от оси OY, будет стремительно уменьшаться, а с правой стороны действует на протяжении всего поворота поплавка от исходного положения до угла О=90 o максимальная выталкивающая сила, равная весу вытесненной воды в объеме половины сечения поплавка. При повороте на угол О=90 o выталкивающая сила с левой стороны становится равной 0, а начиная с угла = 90 o , уменьшается выталкивающая сила с правой стороны и становится = 0, когда задняя поверхность 19 не достигнет оси OX с обратной стороны от оси OY. Все это происходит мгновенно, с ускорением, поплавок выныривает полностью из воды с разгоном. Такой эффект создается благодаря форме поплавка. В процессе поворота левая часть поплавка постоянно пересекает положение неустойчивого равновесия и как бы "накачивает собой" объем в правой части, компенсируя полностью выход из воды поплавка в течение всего поворота на угол 90 o , а значит и сохраняя величину выталкивающей силы в правой части. Из механики известно, что когда на тело постоянно действует сила - оно двигается с ускорением. Но такому резкому повороту поплавка на первых порах мешает сила инерции и сопротивление системы приводов вала, зубчатых колес, редуктора и электрогенератора, которые только начинают сначала медленное вращение. Благодаря одновременному воздействию нескольких поплавков создается достаточный момент для вращения вала. Вначале скорость вращения валов меньше скорости вращения поплавков, которую они имели бы при кувырке. Поплавки воздействуют на вал и вращаются со скоростью вала. При этом они не успевают полностью выйти из воды, как уровень волны начинает падать, и поплавки возвращаются обратно в исходное положение. Валы же продолжают вращение по инерции и от того, что на них действуют другие поплавки, и не препятствуют возврату предыдущих поплавков в исходное положение за счет наличия обгонных муфт или храпового механизма. В то время когда одни поплавки совершают холостой ход на валу, другие поплавки в это время совершают активный рабочий ход, а еще другие поплавки находятся в промежуточном состоянии. По мере нарастания оборотов вала поплавки увеличивают скорость поворота валов. При этом поплавки с каждым оборотом все больше и больше выныривают из воды, а скорость валов приближается к скорости кувырка поплавков в свободном от вала состоянии. Поплавки уже успевают полностью вынырнуть из воды до начала падения уровня волны и занять крайнее верхнее положение. В этот момент передняя поверхность 15 поплавков воздействует на подвижный упор 20, отжимает его вниз и погружается в воду. При падении уровня волны поплавки продолжают вращение к исходному положению адекватно спаду волны. Этому способствует разность моментов M от веса объемного выступа и веса дополнительного груза. Валы вращаются уже с большей скоростью, чем поплавки, поворачивающиеся в сторону исходного положения. При этом за счет инерции движения поплавки проскакивают исходное положение и освобождают подвижный упор 20, который возвращается под действием пружины в исходное положение. В это время поплавки из-за разности моментов M совершают колебательное движение обратно к исходному положению и, упираясь в подвижный упор 20, взаимодействующий с неподвижным упором 22, останавливаются в исходном положении. Далее процесс повторяется для каждого поплавка с периодичностью набегания волны, зависящей от амплитуды волны: чем выше волны, тем больше период. При вращении валов зубчатые колеса 10, закрепленные на выходном конце валов, передают крутящий момент непосредственно зубчатому колесу на входном валу редуктора 11 (или через дополнительную повышающую зубчатую передачу). От редуктора 11 крутящий момент передается электрогенератору. Во вращении каждого вала в волновой электростанции наступает такой момент, когда от воздействия какой-то последней группы поплавков вал разгоняется до такой степени, что его скорость вращения становится равной средней скорости вращения поплавков при кувырке. Поплавки перестают воздействовать на вал на какой-то миг, и вал снова начинает терять скорость. Поплавки снова начинают воздействовать на вал и добавлять ему крутящий момент. Вал опять разгоняется, затем снова замедляется; таким образом поддерживается скорость вращения валов, близкая к скорости вращения поплавка при свободном кувырке. Для расчета мощности N с волновой электростанции необходимо произвести сначала расчет крутящего момента, создаваемого одним поплавком. Для упрощения расчетов принимаем, что воздушное пространство внутри поплавка начинается от оси вращения, т.е. не учитываем наличие ступицы и отверстия поплавка (при этом очень незначительное увеличение крутящего момента от выталкивающей силы скомпенсируем тем, что в расчетах не будет учитываться крутящий момент, создаваемый выталкивающей силой, действующий на объемный выступ при затоплении его волной). Рассмотрим текущее положение поплавка (фиг. 3), при котором он уже совершил поворот от исходного положения на некоторый угол . В этом случае затопленная часть поплавка - полуцилиндра представляет сектор с углом 180 o - (объемный выступ не учитываем). Центр масс этой части сектора будет располагаться в точке C в на радиусе, делящем сектор пополам, т.е. на угле сектора. От оси OY это составляет угол На поплавок действует еще сила веса P, центр тяжести C п которого расположен на радиусе, проходящем по оси симметрии поплавка (180 o: 2 = 90 o) в исходном положении. От оси OY в текущем положении это составляет угол . Из механики известна формула, связывающая кинетическую энергию вращательного движения (T - T o) на угол от = 0 до работой A, выполняемой за этот же поворот от 0 до :(T - T o)=A, где где - скорость вращательного движения; M - крутящий момент; I o - момент инерции. Для определения работы составим сначала уравнение для крутящего момента. Уравнение момента, действующего на поплавок в текущем положении (при повороте на некоторый угол ) M т = Qh в - Ph п - P ов h ов + P д h д = M трен.
Для упрощения моменты, создаваемые весом объемного выступа и весом дополнительного груза в расчете не учитываем, ввиду их малости. Также не учитываем моменты от сил трения, которые на порядок меньше, чем момент от выталкивающей силы. Для сектора на угле 180 o -:

где - удельный вес воды,


Отсюда:

Тогда работа A, создаваемая действием выталкивающей силы Q и весом поплавка P на угле поворота от = 0 (исходное положение) до = 180 o (до выхода поплавка из воды), составит

После преобразования получаем

После решения получаем

Для определения мощности A/t определим время поворота поплавка на угол от 0 o до 180 o . Из уравнения T-T o =A после подстановки получаем

так как при 0 = 0 0 = 0, а

то после подстановки получим равенство


отсюда

Так как = , то уравнение мощностей будет

Рассмотрим пример расчета мощности волновой электростанции, выполненной согласно фиг. 1, 2, и 3: 3 понтона с 20 эстакадами и валами. На каждом валу 20 поплавков из алюминиевого сплава Д16Т ( = 2,7) . Размеры поплавков: R = 1 м; l = 1 м
При толщине листа 5 мм вес поплавка P = mg = 70 кг. Сначала произведем расчет мощности для одного поплавка. При этом примем удельную плотность морской воды равной 1025 кг/м 3 (исходя из средней условной плотности T = 25). Исходя из уравнения (2), получим


При этом

а

При темпе волнообразования в среднем 5,5 с мощность поплавка равна
N = 60,66:5,5 = 11 кВт. Примем итоговый КПД волновой электростанции с учетом КПД приводов и всех сил трения, в т.ч. воды, равным 0,6, тогда мощность волновой электростанции из 400 поплавков составит
N с = 11 400 0,6=2640 кВт,
При этом волновая электростанция будет занимать площадь . Съем мощности с 1 м 2 составит 2640:800=3,3 кВт/м 2 (сравните со съемом мощности в прототипе в 1,39 кВт или с волновыми электростанциями при использовании только воздушных турбин, где съем мощности равен 1 кВт/м 2). При этом следует отметить, что при большей высоте волны (свыше оси X) увеличивается выталкивающая сила и достигает суммарно максимального значения, когда поплавок будет затоплен от исходного нижнего положения на высоту 2R. В этом случае на поплавок воздействует выталкивающая сила в течение поворота поплавка не на 180 o , а на угол 270 o . При этом с момента поворота поплавка на угол 90 o (от исходного положения) на поплавок будет воздействовать неуравновешанная выталкивающая сила, равная весу воды, вытесненной в объеме всего поплавка (т.е. в 2 раза больше). Соответственно и создаваемая мощность волновой электростанции будет значительно выше приведенной в расчетах. Годовая выработка W электроэнергии, при условии работы волновой электростанции, например, 2/3 от годового фонда времени (в остальное время затишье или отсутствие волн необходимой высоты) и без учета волн большей высоты, чем высота затопляемой части поплавка на величину объемного выступа (данные о времени работы волновой электростанции необходимо взять конкретно из статистических данных метеонаблюдений для конкретной местности) составит 15417600 кВт/час = (2/3 264024365) При цене 1 кВт/часа 100 руб. доход от электростанции будет равен 1541,76 млн. руб. в год. При среднем потреблении 30 кВтчас в месяц на одного жителя волновая электростанция обеспечит энергопотребление населенного пункта с количеством жителей 15417600: (3012)= 42826 чел., т.е. целого городка (не считая промышленное потребление). Связанные в единую энергетическую сеть волновые электростанции позволят существенно сократить выработку электроэнергии, осуществляемую за счет сжигания топливных ресурсов. Исходя из данных многолетних метеонаблюдений за прибрежными волнами конкретных местностей могут быть построены волновые электростанции с различными по размерам и количеству поплавками. При этом должна быть проведена унификация и установлен оптимальный размерный ряд электростанций (что позволяет уменьшить затраты на их изготовлении). Станции могут быть установлены на разных расстояниях от побережья. Учитывая простоту волновой электростанции, затраты на создание их окупятся в течение года. Так, например, представленная волновая электростанция будет иметь такую укрупненную калькуляцию работ на изготовление (в ценах начала 1997 года);
3 понтона диаметром 3м, длиной 15-18 м 10 млн х 3 = 30 млн.,
20 эстакад с опорами под вал - 5 млн х 20 = 100 млн.,
20 валов - 5,5 х 20 = 110 млн.,
400 поплавков из алюм. сплава (суммарный вес 30 т) с обгонными муфтами - 0,25 х 400 = 100 млн.,
5 редукторов - 25х5 = 125 млн.,
5 генераторов - 30х5 = 150 млн.,
5 зубчатых передач 5х5 = 25 млн.,
Электрооборудование (шкафы, провода и т.д.) - 20 млн.,
Монтаж станции - 150 млн.,
Итого: 810 млн. рублей. Сравнивая с годовым доходом 1541,76 млн. рублей, можно уверенно сказать, что при данной калькуляции затрат станция окупит капитальные затраты в течение года. Таким образом, предлагаемая волновая электростанция позволяет более эффективно превращать кинетическую энергию поднимающейся волны в потенциальную энергию выталкивающей силы, действующей на поплавки, за счет удержания поплавков в крайней нижнем положении до их полного погружения в воду и мгновенного полного преобразования этой потенциальной энергии в кинематическую энергию, причем непосредственно во вращательное движение поплавков. Съем мощности с 1 м 2 воды увеличивается в 2-3 раза, упрощается конструкция волновой электростанции за счет использования кинематически простых элементов, не требующих высокой точности, и применения обычных, освоенных в машиностроении деталей и покупных изделий (зубчатых передач, валов, обгонных и соединительных муфт, редукторов, генераторов). Огромные морские просторы обеспечивают возможность строительства большого количества таких волновых электростанций и сократить количество теплоэлектростанций, сжигающих топливные ресурсы. Улучшается экологическое состояние в местах выработки электроэнергии окружающей среды. Высокая окупаемость капитальных затрат (в течение 1-2 лет) делает эффективным использование финансовых ресурсов при строительстве предлагаемой волновой электростанции.

Волновая электростанция - это электрическая станция, которая располагается в водной природной среде с целью получения электроэнергии из кинетической энергии водных масс. Океаны обладают колоссальной энергией, но человек пока только начинает ее осваивать. Именно эту задачу и выполняют волновые электростанции.

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

Волновые электростанции в России

В России, как и во всех странах, имеющих выход к морскому побережью, после многих лет затишья, возвращается интерес к источникам энергии, способным восстанавливаться, к ним относятся и волновые электростанции.

Первая в нашей стране электростанция , основанная на преобразовании энергии волн, построена в
2014 году на Дальнем Востоке в Приморском крае на полуострове Гамова. Это универсальная станция, она способна преобразовывать не только энергию направленных водных масс, но и энергию природных приливов и отливов.

Профильные министерства нашей страны, совместно с руководством государства разработали план развития зеленой энергетики до 2020 года, в соответствии с которым альтернативные энергетические источники будут составлять до 5% от общего количества вырабатываемого электричества в стране. Этим планом предусмотрено и дальнейшее развитие волновых электрических станций.

Волновые электростанции в мире

Первая в мире электростанция на волнах появилась в 1985 году в Норвегии, ее мощность составляла 500 кВт.

Первой в мире промышленной электрической станцией, использующей энергию волн для производства
электрической энергии, принято считать Oceanlinx в Австралии. Она начала своё функционирование в 2005 году, потом была произведена ее реконструкция, и в 2009 году станция заработала вновь. Работа станции основана на принципе «осциллирующего водяного столба». Мощность установки сейчас составляет 450 кВт.

Первая коммерческая волновая электростанция начала работу в 2008 году в Агусадоре, Португалия. Это установка-пионер, которая использует непосредственно механическую энергию волны. Работа станции основана на принципе «колеблющегося тела». Разработала проект английская компания Pelamis Wave Power, мощность станции составила 2,3 МВт, и есть возможность увеличения мощности путем монтирования дополнительных секций.

В Великобритании построили самую большую в мире волновую электростанцию Wave Hub, она расположена у полуострова Корнуэлла. Электростанция оборудована 4-мя генераторами мощностью по 150 кВт каждый. Работа станции основана на принципе «колеблющегося тела».

Почему это выгодно?

В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии. Одним из таких вариантов является энергия морских волн. С учетом того, что мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления, то и развитие «зеленой» энергетики как нельзя актуально в наше время.

Это можно объяснить следующим причинами:

  1. Природные богатства планеты находятся на грани истощения, запасы традиционных источников энергии: угля, нефти и газа – подходят к концу.
  2. Атомная энергетика из-за своей потенциальной опасности не получила должного распространения.
  3. «Зеленая» энергетика не вредит окружающей среде и является возобновляемой.
  4. Потенциал волновых электростанций оценивается в 2,0 млн. МВт, что сравнимо по мощности с тысячей работающих атомных станций.

Ученые всего мира продолжают работы по совершенствованию способов преобразования энергии волн океана, и перечисленные выше причины являются важным аргументом для продолжения этих изысканий.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Волновые электростанции не являются исключением, рассмотрим все за и против использования этого источника энергии.

К плюсам использования можно отнести:


К минусам данного типа электростанций относятся:

  • Малая мощность вырабатываемой энергии;
  • Не стабильный характер работы, вызванный атмосферными явлениями в окружающей среде;
  • Может создавать опасность для хода судов и промышленного лова рыбы.

Приведенные выше «минусы» использования постепенно утрачивают свою актуальность, ученые и конструкторы продолжают свою работу. Разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия волн. Решаются задачи по передаче полученной энергии на большие расстояния.

Движение океанских волн сопровождается выделением фантастических объемов энергии. Однако человечество пока так и не научилось эффективно перерабатывать эту энергию для своих целей. Одна из успешнейших на данный момент попыток – волновая электростанция Oceanlinx в акватории города Порт-Кембла, Австралия.



В настоящее время в мире проводятся испытания шести волновых электростанций. Электростанция же Oceanlinx у берегов Австралии была введена в эксплуатацию еще в 2005 году, однако затем была демонтирована для реконструкции и переоборудования, и только сейчас вновь запущена в действие.


Принцип работы волновой электростанции заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электричество.


Основным элементом, определяющим эффективность работы волновой электростанции, является турбина. Из-за того, что направление движения волн и их сила постоянно меняются, обычные турбины для выработки волновой электроэнергии непригодны. Поэтому на станции Oceanlinx используется турбина Denniss-Auld c регулируемым углом поворота лопастей.

Одна силовая установка Oceanlinx обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.