Принцип суперпозиции полей и его применение. Конспект урока "Напряженность электрического поля

Это некоторое положение, которое применяется при ряде случаев. Это один из общих физических законов, на которых строится физика, как наука. Этим он и примечателен для учёных, которые применяют его в разных ситуациях.

Если рассмотреть принцип суперпозиции в самом общем смысле, то согласно ему, сумма воздействия внешних сил, действующих на частицу, будет складываться из отдельных значений каждой из них.

Данный принцип применяется к различным линейным системам, т.е. таким системам, поведение которых можно описать линейными соотношениями. Примером может послужить простая ситуация, когда линейная волна распространяется в какой-то определённой среде, в этом случае её свойства будут сохраняться даже под действием возмущений, возникающих из-за самой волны. Эти свойства определяются как конкретная сумма эффектов каждой из гармоничных составляющих.

Сферы применения

Как уже было сказано, принцип суперпозиции имеет достаточно широкие сферы применения. Наиболее ярко его действие можно увидеть в электродинамике. Однако важно помнить, что рассматривая принцип суперпозиции, физика не считает его конкретным постулатом, а именно следствием из теории электродинамики.

Например, в электростатике данный принцип действует при изучении Система зарядов в конкретной точке создаёт напряжённость, которая будет складываться из суммы напряжённостей полей каждого из заряда. Данный вывод используется на практике, потому что с его помощью можно сосчитать потенциальную энергию электростатического взаимодействия. В этом случае нужно будет подсчитать потенциальную энергию каждого отдельного заряда.

Это подтверждается уравнением Максвелла, которое линейно в вакууме. Отсюда также следует тот факт, что свет не рассеивается, а распространяется линейно, поэтому отдельные лучи не взаимодействуют друг с другом. В физике это явление часто называют принципом суперпозиции в оптике.

Стоит также отметить, что в классической физике принцип суперпозиции вытекает из линейности уравнений отдельных движущихся линейных систем, поэтому является приближенным. Он основывается на глубоких динамических принципах, но приближенность делает его не универсальным и не фундаментальным.

В частности сильное описывается другими уравнениями, нелинейными, поэтому и принцип не может применяться в данных ситуациях. Макроскопическое также не подчиняется данному принципу, так как зависит от воздействия внешних полей.

Однако принцип суперпозиции сил является фундаментальным в квантовой физике. Если в других разделах он применяется с некоторыми погрешностями, то на квантовом уровне работает достаточно точно. Любая квантомеханическая система изображается из и векторов линейного пространства, и если она подчиняется линейным функциям, то её состояние определяется по принципу суперпозиции, т.е. складывается из суперпозиции каждого состояния и волновой функции.

Границы применения достаточно условны. Уравнения классической электродинамики линейны, но это не является основным правилом. Большинство фундаментальных теорий физики строятся по нелинейным уравнениям. Это значит, что в них принцип суперпозиции выполняться не будет, сюда можно отнести общую теорию относительности, квантовую хромодинамику, а также теорию Янга-Миллса.

В некоторых системах, где принципы линейности применимы только отчасти, может условно применяться и принцип суперпозиции, например, слабые гравитационные взаимодействия. Кроме того, при рассмотрении взаимодействия атомов и молекул принцип суперпозиции также не сохраняется, этим объясняется разнообразие физических и химических свойств материалов.

Материал из Википедии - свободной энциклопедии

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики . В самой простой формулировке принцип суперпозиции гласит:

  • Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
  • Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике , в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .
  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

В некоторых случаях эти нелинейности невелики, и принцип суперпозиции с некоторой степенью приближения может выполняться. В других случаях нарушение принципа суперпозиции велико и может приводить к принципиально новым явлениям. Так, например, два луча света, распространяющиеся в нелинейной среде, могут изменять траекторию друг друга. Более того, даже один луч света в нелинейной среде может воздействовать сам на себя и изменять свои характеристики. Многочисленные эффекты такого типа изучает нелинейная оптика .

Отсутствие принципа суперпозиции в нелинейных теориях

Тот факт, что уравнения классической электродинамики линейны, является скорее исключением, чем правилом. Многие фундаментальные теории современной физики являются нелинейными. Например, квантовая хромодинамика - фундаментальная теория сильных взаимодействий - является разновидностью теории Янга - Миллса , которая нелинейна по построению. Это приводит к сильнейшему нарушению принципа суперпозиции даже в классических (неквантованных) решениях уравнений Янга - Миллса.

Другим известным примером нелинейной теории является общая теория относительности . В ней также не выполняется принцип суперпозиции. Например, Солнце притягивает не только Землю и Луну, но также и само взаимодействие между Землёй и Луной. Впрочем, в слабых гравитационных полях эффекты нелинейности слабы, и для повседневных задач приближённый принцип суперпозиции выполняется с высокой точностью.

Наконец, принцип суперпозиции не выполняется, когда речь идёт о взаимодействии атомов и молекул . Это можно пояснить следующим образом. Рассмотрим два атома, связанных общим электронным облаком . Поднесем теперь точно такой же третий атом. Он как бы оттянет на себя часть связывающего атомы электронного облака, и в результате связь между первоначальными атомами ослабнет. То есть, присутствие третьего атома изменяет энергию взаимодействия пары атомов. Причина этого проста: третий атом взаимодействует не только с первыми двумя, но и с той «субстанцией», которая обеспечивает связь первых двух атомов.

Нарушение принципа суперпозиции во взаимодействиях атомов в немалой степени приводит к тому удивительному разнообразию физических и химических свойств веществ и материалов, которое так трудно предсказать из общих принципов молекулярной динамики.

Напишите отзыв о статье "Принцип суперпозиции"

Отрывок, характеризующий Принцип суперпозиции

Толпа, окружавшая икону, вдруг раскрылась и надавила Пьера. Кто то, вероятно, очень важное лицо, судя по поспешности, с которой перед ним сторонились, подходил к иконе.
Это был Кутузов, объезжавший позицию. Он, возвращаясь к Татариновой, подошел к молебну. Пьер тотчас же узнал Кутузова по его особенной, отличавшейся от всех фигуре.
В длинном сюртуке на огромном толщиной теле, с сутуловатой спиной, с открытой белой головой и с вытекшим, белым глазом на оплывшем лице, Кутузов вошел своей ныряющей, раскачивающейся походкой в круг и остановился позади священника. Он перекрестился привычным жестом, достал рукой до земли и, тяжело вздохнув, опустил свою седую голову. За Кутузовым был Бенигсен и свита. Несмотря на присутствие главнокомандующего, обратившего на себя внимание всех высших чинов, ополченцы и солдаты, не глядя на него, продолжали молиться.
Когда кончился молебен, Кутузов подошел к иконе, тяжело опустился на колена, кланяясь в землю, и долго пытался и не мог встать от тяжести и слабости. Седая голова его подергивалась от усилий. Наконец он встал и с детски наивным вытягиванием губ приложился к иконе и опять поклонился, дотронувшись рукой до земли. Генералитет последовал его примеру; потом офицеры, и за ними, давя друг друга, топчась, пыхтя и толкаясь, с взволнованными лицами, полезли солдаты и ополченцы.

Покачиваясь от давки, охватившей его, Пьер оглядывался вокруг себя.
– Граф, Петр Кирилыч! Вы как здесь? – сказал чей то голос. Пьер оглянулся.
Борис Друбецкой, обчищая рукой коленки, которые он запачкал (вероятно, тоже прикладываясь к иконе), улыбаясь подходил к Пьеру. Борис был одет элегантно, с оттенком походной воинственности. На нем был длинный сюртук и плеть через плечо, так же, как у Кутузова.
Кутузов между тем подошел к деревне и сел в тени ближайшего дома на лавку, которую бегом принес один казак, а другой поспешно покрыл ковриком. Огромная блестящая свита окружила главнокомандующего.
Икона тронулась дальше, сопутствуемая толпой. Пьер шагах в тридцати от Кутузова остановился, разговаривая с Борисом.
Пьер объяснил свое намерение участвовать в сражении и осмотреть позицию.
– Вот как сделайте, – сказал Борис. – Je vous ferai les honneurs du camp. [Я вас буду угощать лагерем.] Лучше всего вы увидите все оттуда, где будет граф Бенигсен. Я ведь при нем состою. Я ему доложу. А если хотите объехать позицию, то поедемте с нами: мы сейчас едем на левый фланг. А потом вернемся, и милости прошу у меня ночевать, и партию составим. Вы ведь знакомы с Дмитрием Сергеичем? Он вот тут стоит, – он указал третий дом в Горках.
– Но мне бы хотелось видеть правый фланг; говорят, он очень силен, – сказал Пьер. – Я бы хотел проехать от Москвы реки и всю позицию.
– Ну, это после можете, а главный – левый фланг…
– Да, да. А где полк князя Болконского, не можете вы указать мне? – спросил Пьер.
– Андрея Николаевича? мы мимо проедем, я вас проведу к нему.
– Что ж левый фланг? – спросил Пьер.
– По правде вам сказать, entre nous, [между нами,] левый фланг наш бог знает в каком положении, – сказал Борис, доверчиво понижая голос, – граф Бенигсен совсем не то предполагал. Он предполагал укрепить вон тот курган, совсем не так… но, – Борис пожал плечами. – Светлейший не захотел, или ему наговорили. Ведь… – И Борис не договорил, потому что в это время к Пьеру подошел Кайсаров, адъютант Кутузова. – А! Паисий Сергеич, – сказал Борис, с свободной улыбкой обращаясь к Кайсарову, – А я вот стараюсь объяснить графу позицию. Удивительно, как мог светлейший так верно угадать замыслы французов!
– Вы про левый фланг? – сказал Кайсаров.
– Да, да, именно. Левый фланг наш теперь очень, очень силен.
Несмотря на то, что Кутузов выгонял всех лишних из штаба, Борис после перемен, произведенных Кутузовым, сумел удержаться при главной квартире. Борис пристроился к графу Бенигсену. Граф Бенигсен, как и все люди, при которых находился Борис, считал молодого князя Друбецкого неоцененным человеком.
В начальствовании армией были две резкие, определенные партии: партия Кутузова и партия Бенигсена, начальника штаба. Борис находился при этой последней партии, и никто так, как он, не умел, воздавая раболепное уважение Кутузову, давать чувствовать, что старик плох и что все дело ведется Бенигсеном. Теперь наступила решительная минута сражения, которая должна была или уничтожить Кутузова и передать власть Бенигсену, или, ежели бы даже Кутузов выиграл сражение, дать почувствовать, что все сделано Бенигсеном. Во всяком случае, за завтрашний день должны были быть розданы большие награды и выдвинуты вперед новые люди. И вследствие этого Борис находился в раздраженном оживлении весь этот день.
За Кайсаровым к Пьеру еще подошли другие из его знакомых, и он не успевал отвечать на расспросы о Москве, которыми они засыпали его, и не успевал выслушивать рассказов, которые ему делали. На всех лицах выражались оживление и тревога. Но Пьеру казалось, что причина возбуждения, выражавшегося на некоторых из этих лиц, лежала больше в вопросах личного успеха, и у него не выходило из головы то другое выражение возбуждения, которое он видел на других лицах и которое говорило о вопросах не личных, а общих, вопросах жизни и смерти. Кутузов заметил фигуру Пьера и группу, собравшуюся около него.
– Позовите его ко мне, – сказал Кутузов. Адъютант передал желание светлейшего, и Пьер направился к скамейке. Но еще прежде него к Кутузову подошел рядовой ополченец. Это был Долохов.
– Этот как тут? – спросил Пьер.

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 ,…, Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q 0 равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q;.

Согласно (79.1), F = Q 0 E и F 1 = Q 0 E 1 , где Е - напряженность результирующего поля, а Е 1 - напряженность поля, создаваемого зарядом Q 1 . Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q|на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

где Е + и Е_ - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2 ≪ г, поэтому

2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где г" - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Е в, получим

(80.5)

Подставив в выражение (80.S) значение (80.4), получим

Вектор E g имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

Теорема Гаусса для электростатического

Поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен


Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Одной из основных задач электростатики является оценка параметров поля при заданном, стационарном, распределении зарядов в пространстве. Один из способов решения подобных задач основан на принципе суперпозиции . Суть его в следующем.

Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда qk такая сила, как если бы других зарядов не было. Результирующая сила определится выражением:

это принцип суперпозиции или независимости действия сил.

Т.к. , то – результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции :

(1.4.1)

Это соотношение выражает принцип наложения или суперпозиции электрических полей и представляет важное свойство электрического поля. Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.

Рассмотрим применение принципа суперпозиции в случае поля, созданного электрической системой из двух зарядов с расстоянием между зарядами, равными l (рис. 1.2).


Рис. 1.2

Поля, создаваемые различными зарядами, не влияют друг на друга, поэтому вектор результирующего поля нескольких зарядов может быть найден по правилу сложения векторов (правило параллелограмма)

.
, и , так как задача симметрична.

В данном случае

и

Следовательно,

(1.4.2)

Рассмотрим другой пример. Найдем напряженность электростатического поля Е , создаваемую двумя положительными зарядами q 1 и q 2 в точке А , находящейся на расстоянии r 1 от первого и r 2 от второго заря-дов (рис. 1.3).


Рис. 1.3

; .

Воспользуемся теоремой косинусов:

(1.4.3)

Где .

Если поле создается не точечными зарядами , то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу:

(1.4.4)

Где – напряженность поля, обусловленная заряженным элементом. Интеграл может быть линейным, по площади или по объему в зависимости от формы тела. Для решения подобных задач пользуются соответствующими значениями плотности заряда:
– линейная плотность заряда, измеряется в Кл/м;
– поверхностная плотность заряда, измеряется в Кл/м2;
– объемная плотность заряда, измеряется в Кл/м3.

Если же поле создано сложными по форме заряженными телами и неравномерно заряженными, то используя принцип суперпозиции, трудно найти результирующее поле.

формуле (1.4.4) мы видим, что – векторная величина:

(1.4.5)

Так что интегрирование может оказаться непростым. Поэтому для вычисления часто пользуются другими методами, которые мы обсудим в следующих темах. Однако в некоторых, относительно простых случаях эти формулы позволяют аналитически рассчитать .

В качестве примеров можно рассмотреть линейное распределение зарядов или распределение заряда по окружности .

Определим напряженность электрического поля в точке А (рис. 1.4) на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. Пусть λ – заряд, приходящийся на единицу длины.


Рис. 1.4

Считаем, что х – мало по сравнению с длиной проводника. Выберем систему координат так, чтобы ось y совпадала с проводником. Элемент длины dy , несет заряд Создаваемая этим элементом напряженность электрического поля в точке А .